Efficient Parallel Algorithms for Planar DAGs

نویسندگان

  • Stephen Guattery
  • Gary L. Miller
چکیده

We show that testing reachability in a planar DAG can be performed in parallel in 0(log n log* n) time(0(logn) time using randomization) using 0(n) processors. In general we give a paradigm for reducing a planar DAG to a constant size and then expanding it back. This paradigm is developed from a property of planar directed graphs we refer to as the Poincare index formula. Using this new paradigm we then "overlay" our application in a fashion similar to parallel tree contraction [MR85, MR89]. We also discuss some of the changes needed to extend the reduction procedure to work for general planar digraphs. Using the strongly-connected components algorithm of Kao [Kao93] we can compute multiple-source reachability for general planar digraphs in 0(logn) time using 0(n) processors. This improves the results of Kao and Klein [KK90] who showed that this problem could be performed in C^log n) time using O(n) processors. This work represents initial results of an effort to apply similar techniques to arbitrary planar directed graphs, and to develop efficient algorithms for certain problems encountered in parallel compilation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simplified External Memory Algorithms for Planar DAGs

In recent years a large number I/O-efficient algorithms have been developed for fundamental planar graph problems. Most of these algorithms rely on the existence of small planar separators as well as an O(sort(N)) I/O algorithm for computing a partition of a planar graph based on such separators, where O(sort(N)) is the number of I/Os needed to sort N elements. In this paper we simplify and uni...

متن کامل

Elimination Structures in Scientific Computing

Tel-Aviv University 1.1 The elimination tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2 The elimination game • The elimination tree data structure • An algorithm • A skeleton graph • Supernodes 1.2 Applications of etrees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-8 Efficient symbolic factorization • Predicting row and column nonzero counts •...

متن کامل

DAGmaps and ε-Visibility Representations for DAGs: Algorithms and Characterizations

DAGmaps are space filling visualizations of DAGs that generalize treemaps. Deciding whether or not a DAG admits a DAGmap is NPcomplete. Although any layered planar DAG admits a one-dimensional DAGmap there was no complete characterization of the class of DAGs that admit a one-dimensional DAGmap. In this paper we prove that a DAG admits a one-dimensional DAGmap if and only if it admits a directe...

متن کامل

Bulk Synchronous Parallel Scheduling of Uniform Dags

This paper addresses the dag scheduling problem, proposing the bulk synchronous parallel (BSP) model as a framework for the derivation of general purpose parallel computer schedules of uniform dags, i.e., of dags that stand for tightly-nested loops with computable distance vectors. A general technique for the BSP scheduling of normalised uniform dags is introduced and analysed in terms of the B...

متن کامل

A New Parallel Matrix Multiplication Method Adapted on Fibonacci Hypercube Structure

The objective of this study was to develop a new optimal parallel algorithm for matrix multiplication which could run on a Fibonacci Hypercube structure. Most of the popular algorithms for parallel matrix multiplication can not run on Fibonacci Hypercube structure, therefore giving a method that can be run on all structures especially Fibonacci Hypercube structure is necessary for parallel matr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995